

User's manual

Before operating this product, please read the instructions carefully and keep this manual for future use.

Catalogue

1 1	
1.Introduction	5
1.1.Preliminary Information	
1.2.Safety Precautions	
1.3.Functioning Principles	
1.4.Product Component Diagram	
1.5.Technical Specifications	
2.Overview of the Units	
2.1.Functional Diagrams	
2.2.Outlines and Dimensions	
2.3.Exploded Views	
3.Assembly Configurations	
Assembly Configuration Selection Flowchart	
Assembly Drawings, Wiring, and Software	
4.Installation Walkthrough	49
4.1.Sanitary Hot Water Applications	
4.2.Heating and Cooling Circuits	53
4.3.Indoor Unit Installation	
4.4.Outdoor Unit Installation	
4.5.Wiring	60
4.6.Refrigerant Pipework	
4.7.Water Pipework	
4.8.Test Run	

5.Appendix	75
A. Wiring	75
B. Wiring Diagrams	77

Included Accessories

Below are the accessories that are included with your purchase. Please check to ensure that none are missing or damaged. If so,please contact your local distributor.

1. Introduction

1.1 Preliminary Information

Thank you for your purchase of our quality heat pump.

This manual is intended to provide detailed instructions for the successful installation of your newly purchased heat pump product. Please ensure that this manual, along with the User's and Service manuals, are kept in an easy-to-access location for your reference later on.

DISCLAIMER

Proper adherence to the directions provided herein is vital for both the smooth operation of this system, as well as for your safety and the safety of those around you. Amitime Electric Co., Ltd. is not responsible or liable for any losses incurred due to misuse or mishandling of this product, which includes, but is not limited to:

- Purchasing, installing, and/or operating this product with the intention of using it outside of its established, technical purpose.
- Carrying out improper work upon the unit, or any of its components, that has not been given explicit, prior consent in the form of writing.
- Installation attempts of this system by anyone other than a properly trained and licensed professional.
- Negligence of properly-worn personal protection (safety glasses, gloves, etc.) while performing installation, maintenance, or servicing of this product.
- The operation of this system during ambient temperatures which are below or beyond the temperature range intended (-25°C to 43°C)

SAFETY

If unsure of what installation procedures to use, please contact your local distributor for information and/or advisement. Any accessories used with this product must be official only. Any electrical work must be carried out by certified electricians only. The manufacturer is not responsible for any alterations or modifications that are made without explicit, written approval. The design of this unit complies and conforms to all necessary and relevant safety regulations, and is otherwise safe to operate for its intended use.

Please pay attention to the following pages, which detail important precautions that should be closely followed, to ensure safe installation and operation .

1.2.Safety Precautions

To ensure both your personal safety, as well as the safety of the product, note the symbols below and be sure to understand their correlation to each of the precautions depicted.

1.2.Safety Precautions

1. Introduction

1.3. Functioning Principles

1.4.Product Components Diagram

Below is a general system application of the heat pump. Any specific configurations should be a variation of this "master" system drawing. All suggested assembly variations are given in Chapter 3.

Air purging valve	Water filter	Ball valve	Safety valve Kit	Temp.Sensor	Name
Ŧœ	Þ	X	->#	٢	Symbol
Note:Dotted lines mean "abl	Expansion tank	Motorized valve	Mixing valve	Water pump	Name
Note:Dotted lines mean "able to be controlled by the Heat $Pump''$.	0-	Xø	×	۲	Symbol

1.5.Technical Specifications

Type of Product		DC Inverter Air to Water Heat Pump Unit				
Model			NPH6-V7-S	NPH9-V7-S	NPH11-V7-S	NPH13-V7-S
Power Supply-Refrigerant		V/Hz/Ph		220-240/5	0/1-R410A	I
Max. Heating Ca	pacity (1)	KW	6.21	10.10	11.5	12.6
C.O.P (1)		W/W	4.05	4.03	3.82	3.89
Heating Capacity	Min./Max.(1)	KW	2.19/6.21	4.33/10.10	4.67/11.5	4.2/12.6
Heating Power In	put Min./Max.(1)	W	540/1530	975/2153	915/3029	926/3072
C.O.P Min./Max.	(1)	W/W	4.05/5.87	4.02/4.65	3.82/5.05	3.89/4.77
Max. Heating Ca	pacity(2)	KW	5.8	9.53	10.7	11.5
C.O.P (2)		W/W	3.22	3.17	2.95	3.08
Heating Capacity	Min./Max.(2)	KW	2.05/5.8	4.19/9.53	4.14/10.7	3.76/11.5
Heating power in	put Min./Max.(2)	W	640/1810	1230/2990	1218/3624	1267/3723
C.O.P Min./Max.	(2)	W/W	3.22/4.12	3.12/3.55	2.95/3.56	2.97/3.28
Max. Cooling Ca	pacity(3)	KW	5.81	6.84	9.2	10.3
E.E.R (3)		W/W	3.51	2.09	2.68	3.29
Cooling Capacity	Min./Max.(3)	KW	2.05/5.81	4.10/6.84	4.33/9.2	4.29/10.37
Cooling Power In	nput Min./Max.(3)	W	768/2105	1230/3280	993/3465	957/3156
E.E.R Min./Max.	(3)	W/W	3.15/4.71	2.09/3.32	2.685/4.11	3.29/4.63
Max. Cooling Ca	pacity(4)	KW	4.5	5.05	6.74	7.9
E.E.R(4)		W/W	2.52	1.58	2.15	2.63
Cooling Capacity	Min./Max.(4)	KW	1.59/4.5	2.34/5.05	2.17/6.74	2.34/7.91
Cooling Power In	nput Min./Max.(4)	W	614/1740	1080/3200	924/3132	1000/3012
E.E.R Min./Max.	(4)	W/W	2.52/4.32	1.58/2.40	2.15/3.0	2.33/3.12
Compressor	Type-Quantity/Sy	stem		Twin I	Rotary/1	
	Quantity		1	1	1	2
Fan	Airflow	m³/h	2700	3000	3100	4200
	Rated Power	W	65	76	76	150
Noise Level	Indoor/Outdoor	dB(A)	35/52	35/56	30/56	30/59
	Туре			Plate Heat Ex	changer	
Water Side Heat	Water Pressure Dr	rop Kpa	20	23	23	26
Exchanger	Piping Connection	n Inch		G1"		
	Min. Water Flow		0.19	0.24	0.31	0.37
Allowable Water	Rated Water Flow	L/S	0.29	0.395	0.52	0.61
Flow	Max. Water Flow		0.33	0.48	0.62	0.73
Net Dimension Outdoor Unit		mm	920×353×730	946.5×354.5×755	$1056 \times 414 \times 765$	$1154 \times 460 \times 1195$
(L×D×H) Indoor Unit		mm		698×419	×268	
	n Outdoor Unit	mm	$1010 \times 440 \times 880$	$1010 \times 440 \times 810$	$1140 \times 490 \times 810$	1260×490×135
(L×D×H)	Indoor Unit	mm		830×470	X320	1
Net Weight	Outdoor Unit	Kg	52.6	67.5	70	118
	Indoor Unit	Kg		45		
Packing Weight	Outdoor Unit	Kg	63	77.5	80	128
i doking worght	Indoor Unit	Kg		50		

NOTE:

(1) Heating condition: water inlet/outlet temperature:30℃/35℃, ambient temperature:DB/WB 7/6℃;

(2) Heating condition: water inlet/outlet temperature:40 $^\circ C/45\,^\circ C$, ambient temperature:DB/WB 7/6 $^\circ C$;

- (3) Cooling condition: water inlet/outlet temperature: 23° C/18°C, ambient temperature: 35° C;
- (4) Cooling condition: water inlet/outlet temperature:12 $^\circ C/7 \, ^\circ C$, ambient temperature:35 $^\circ C$.

(5) The specifications are subject to change without prior notice.

For actual specifications of the unit, please refer to the specification stickers on the unit.

2.1. Functional Diagrams

Indoor unit

2.1.Functional Diagrams

NP13-V7-S

2.2.Outlines and Dimensions

Outlines and dimensions Indoor — NPH6-V7-S NPH9-V7-S **NPH11-V7-S NPH13-V7-S** •**O**• •0• 419 410 698 880 븉 410

Unit:mm

2.2.Outlines and Dimensions

Unit:mm

Unit:mm

Refrigerant connector dimension:NPH6-V7-S:1/4" and 1/2"

Refrigerant connector dimension:NPH9-V7-S:3/8" and 1/2"

2.2.Outlines and Dimensions

Outdoor — NP13-V7-S

Unit:mm

2.3. Exploded view

Indoor — NPH6-V7-S NPH9-V7-S NPH11-V7-S NPH13-V7-S

NO	Name	NO	Name
1	Operation panel	11	Insulation panel
2	Decorative panel	12	Magnet
3	Door	13	Sensor fixture
4	Electric box cover	14	Needle valve for service
5	Electric box	15	Plate for refrigerant connector
6	Plate heat exchanger	16	Air purging valve
7	Water pump	17	Cable gland
8	Water flow switch	18	WIFI antenna
9	Refrigerant expansion tank	19	Hinge
10	Fixture of plate heat exchanger		

NO	Name	NO	Name	NO	Name
1	Decorative panel	11	Electric box cover	20	1/4" Valve-NP6-V7-S
2	Outdoor fan	12	Top panel	20	3/8" Valve-NP9/11-V7-S
3	Outdoor motor	13	Back panel	21	1/2" Valve
4	Front panel	14	Condenser	22	Side decorative panel
5	Air guide	15	Bulkhead	23	Compressor
6	Fixture	16	Right plate	24	Feet
7	Motor bracket	17	Condebser heater	25	Bottom plate
8	Column support	18	Big handle	26	Eev coil
9	Four-way valve	19	Bulkhead	27	Electrical expansion valve
10	Electrical box			28	Compressor heater

2.3. Exploded view

Outdoor — NP13-V7-S

NO	Name	NO	Name	NO	Name
1	Decorative panel	12	Condenser	23	Side panel
2	Front panel	13	Bulkhead	24	Side decorative panel
3	Air guide	14	Handle	25	Terminal block
4	Outdoor fan	15	Sperator	26	PFC transducer
5	Outdoor motor	16	Suction temperature sensor	27	Transformer
6	Fixture	17	Compressor discharge temperature sensor	28	EEV controller
7	Motor bracket	1/		29	Electronic expansion valve
8	Column support	18	Compressor	30	Crankcase heater
9	Controller	19	Bottom plate	31	Condenser heater
10	Top panel	20	Valve plate	32	4-Way valve
11	Coil and ambient	21	5/8" Valve	33	EEV temperature sensor
11	temperature sensor	22	3/8" Valve		

3. Assembly Configurations - Flowchart

Assembly 1: Wiring Diagram

To achieve successful operation at a minimum, ensure the ports below are properly connected.

Assembly 2: Wiring Diagram

To achieve successful operation at a minimum, ensure the ports below are properly connected.

Software: Basic Settings (continued)

4. The location of the configuration for heating-only or cooling-only system is under

Mode Switch during Defrosting	
Mode Signal Output	Heating

Assembly 3: Wiring Diagram

To achieve successful operation at a minimum, ensure the ports below are properly connected.

For connection for mixing valve 2, please refers to the appendix A (on page 75-76) of this manual for more information.

Software: Basic Settings (continued)

3.(cont.) Configure the water pump to operate for heating or cooling:

P2 for Heating Operation		
P2 for Cooling Operation	€	
4. Temperature configuration options f	for Heating/Cooling circuit 2 are	e found under
Please activate entire Heating/Cooli	ng circuit 2 setting	
	Heating <u>c</u> ooling Circuit 2	V
H. Configuring the set water heating tem	peratures:	
H.1.Setting a heating curve:		
	Water Temp. A/Ambient Temp. 1	40°C
	Water Temp. B/Ambient Temp. 2	37℃
Heating Curve	Water Temp. C/Ambient Temp. 3	33℃
	Water Temp. D/Ambient Temp .4	29℃
	Water Temp. E/Ambient Temp. 5	25℃
H.2. If no heating curve is desired:		
Heating Curve	Set Temp. for Heating (without heating curve)	35℃
C. Configuring the set water cooling tempe	erature (if applicable):	
Set temp. For Cooling 24°C	∢ · _ _ _ _ _	

4.1. Activate the mixing valve to manage the second circuit:

Note: This pair of settings will interpret "Heating/Cooling Circuit 2 as the low demand distribution system, requiring a lower set temperature for heating and higher set temperature for cooling.

Assembly 4: Wiring Diagram

To achieve successful operation at a minimum, ensure the ports below are properly connected.

For connection for mixing valve 2, please refers to the appendix A (on page 75-76) of this manual for more information.

Software: Basic Settings (continued)

3.(cont.) Configure the water pump to operate for heating or cooling:

5.1. Activate the mixing valve to manage the second circuit:

Note: This pair of settings will interpret "Heating/Cooling Circuit 2 as the low demand distribution system, requiring a lower set temperature for heating and higher set temperature for cooling.

Assembly 5: Wiring Diagram

To achieve successful operation at a minimum, ensure the ports below are properly connected.

For connection for mixing valve 2, please refers to the appendix A (on page 75-76) of this manual for more information.

Software: Basic Settings

1.Set the needed working modes of the unit via the menu

Sanitary Hot Water	
Heating	
Cooling	<

P1 with High Temp. Demand

32

If cooling function is desired, ensure these sections are configured

Software: Basic Settings (continued)

3.(cont.) Configure the water pump to operate for heating or cooling:

. Temperature configuration options for	Heating/Cooling circuit 2 are found	Heat
H. Configuring the set water heating te	mperatures:	Cool 2
H.1. Setting a heating curve:	Water Temp. A/Ambient Temp. 1	40℃
	Water Temp. B/Ambient Temp. 2	37℃
Heating Curve	Water Temp. C/Ambient Temp. 3	33℃
	Water Temp. D/Ambient Temp .4	29℃
	Water Temp. E/Ambient Temp. 5	25℃
H.2. If no heating curve is desired:		
leating Curve	Set Temp. for Heating (without heating curve)	35℃

C. Configuring the set water cooling temperature (if applicable):

4.1. Activate the mixing valve to manage the second circuit:

Note: This pair of settings will interpret "Heating/Cooling Circuit 2 as the low demand distribution system, requiring a lower set temperature for heating and higher set temperature for cooling.

Note: a one temperature zone setup that includes depicted on the right for configuration matches domestic hot water. the assembly drawing Please ensure that the Refer to the next page

instructions_ software operation for wiring and

Air purging valve	Water filter	Ball valve	Safety valve Kit	Temp.Sensor	Name			
Ĩœ	Þ	Å	/ #	٢	Symbol			
Note:Dotted lines mean "abl	Expansion tank	Motorized valve	Mixing valve	Water pump	Name			
le to be controlled by the Heat Pu	0-	Xo	×	۲	Symbol			
Name Symbol Water pump Image: Symbol Mixing valve Image: Symbol Motorized valve Image: System relating System relation systems of distribution systems of and can be substituted and can be substituted any other appropriate Note:Dotted lines mean "able to be controlled by the Heat Pump"								

any other appropriate and can be substituted by distribution systems only Radiator are placeholder Floor Heating System, and Notice: The Fan Coil Unit,

Assembly 6: Wiring Diagram

To achieve successful operation at a minimum, ensure the ports below are properly connected.

Software: Basic Settings 1.Set the needed working modes of the unit via the menu Sanitary Hot Water Heating \checkmark Cooling \checkmark 2. Temperature configuration options for Heating/Cooling circuit 1 are found under If cooling function is desired, ensure these sections are configured. **H.**Configuring the set water heating temperatures: H.1.Setting a heating curve: \checkmark **H.2.** If no heating curve is desired: leating Curve Set temp. for Cooling 24°0 C.Configuring the set water cooling temperature (if applicable): 3.Locate and activate the buffer tank and appropriate pumps under Buffer Tank \checkmark P1 for Heating Operation $\mathbf{\overline{\mathbf{V}}}$ P1 for Cooling Operation \triangleleft \checkmark P1 with High Temp. Demand 35

Software: Basic Settings (continued)

4. Double-check to ensure that the Domestic Hot Water option is enabled under

Sanitary Hot Water

5. Configure the desired setpoint for water temperature (default set to 50° C):

Setpoint DHW 50%
3. Assembly Configurations – Drawing 7

37

Please ensure that the configuration

matches the assembly drawing

Assembly 7: Wiring Diagram

To achieve successful operation at a minimum, ensure the ports below are properly connected.

Software: Basic Settings

1.Set the needed working modes of the unit via the menu

Sanitary Hot Water	
Heating	
Cooling	<

H.Configuring the set water heating temperatures:

C.Configuring the set water cooling temperature (if applicable):

3.Locate and activate the buffer tank and appropriate pumps under

Buffer Tank	
P1 for Heating Operation	
P1 for Cooling Operation	\triangleleft
P1 with High Temp. Demand	

Set temp. for Cooling

24%

3. Assembly Configurations – Drawing 7

Software: Basic Settings (continued)

4. The location of the configuration for heating-only or cooling-only system is under

5. Double-check to ensure that the Domestic Hot Water option is enabled under

Sanitary Hot Water

6. Configure the desired setpoint for water temperature (default set to 50° C):

3. Assembly Configurations – Drawing 8

Please ensure that the configuration matches the assembly drawing depicted on the right for a two temperature zone setup that includes domestic hot water. *Note: Refer to the next page*

for wiring and software operation instructions.

Air purging valve	Water filter	Ball valve	Safety valve Kit	Temp.Sensor	Name	
I _C .	Þ	Å	± −	٢	Symbol	
Note:Dotted lines mean "abl	Expansion tank	Motorized valve	Mixing valve	Water pump	Name	
Note:Dotted lines mean "able to be controlled by the Heat $Pump'$	℗–	Ze	Xo	۲	Symbol	
'ump″.	a. a	a 4		1		

Notice: The Fan Coil Unit, Floor Heating System, and Radiator are placeholder distribution systems only and can be substituted by any other appropriate distribution systems.

Assembly 8: Wiring Diagram

To achieve successful operation at a minimum, ensure the ports below are properly connected.

For connection for mixing valve 2, please refers to the appendix A (on page 75-76) of this manual for more information.

Software: Basic Settings 1.Set the needed working modes of the unit via the menu Sanitary Hot Water Heating \checkmark Cooling \checkmark 2. Temperature configuration options for Heating/Cooling circuit 1 are found under If cooling function is desired, ensure these sections are configured. **H.**Configuring the set water heating temperatures: H.1.Setting a heating curve: \checkmark leating Curve **H.2.** If no heating curve is desired: Set temp. for Cooling C.Configuring the set water cooling temperature (if applicable): 3.Locate and activate the buffer tank and appropriate pumps under Buffer Tank \checkmark P1 for Heating Operation P1 for Cooling Operation \triangleleft \checkmark P1 with High Temp. Demand

Software: Basic Settings (continued)

3.(cont.) Configure the water pump to operate for heating or cooling:

C. Configuring the set water cooling temperature (if applicable):

4.1. Activate the mixing valve to manage the second circuit:

Note: This pair of settings will interpret "Heating/Cooling Circuit 2 as the low demand distribution system, requiring a lower set temperature for heating and higher set temperature for cooling.

5. Double-check to ensure that the Domestic Hot Water option is enabled under

6. Configure the desired setpoint for water temperature (default set to 50° C):

Setpoint DHW 50℃

Sanitary Hot Water

Votice: The Fan Coil Unit, ⁴loor Heating System, and Radiator are placeholder and can be substituted by distribution systems only any other appropriate distribution systems.

Note:Dotted lines mean "able to be controlled by the Heat Pump" 97 Symbol ⊜∦ $-\mathbb{O}$ ۲ Motorized valve Expansion tank Mixing valve **Nater** pump Name Symbol R لے ł #⊲--D± Air purging valve Safety valve Kit Temp.Sensor Nater filter Name **3all valve**

> domestic hot water, also that includes temperature zone setup that includes

heating or cooling only, through the use of a two-way motorized valve.

a component circuit capable of

motorized two-way valve can be connected to the unit, to cut the water supply during heating or

For the cooling-only or heating-only circuit, a

Note:

Refer to the next page for

cooling operation.

operation instructions. wiring and software

Please ensure that the configuration

matches the assembly drawing depicted on the right for a two

3. Assembly Configurations – Drawing 9

43

Domestic Hot Water Tank

Sanitary hot water

Assembly 9: Wiring Diagram

To achieve successful operation at a minimum, ensure the ports below are properly connected.

For connection for mixing valve 2, please refers to the appendix A (on page 75-76) of this manual for more information.

Software: Basic Settings (continued)

3.(cont.) Configure the water pump to operate for heating or cooling:

4. The location of the configuration for heating-only or cooling-only system is under

Heating/ Cooling circui

40°€

37℃

33°C

29%

25°C

35°C

ng

Mode Switch during Defrosting			
	Mode Signal Output	Heating	

- 5. Temperature configuration options for Heating/Cooling circuit 2 are found under
- **H.** configuring the set water heating temperatures:

H.1. Setting a heating curve:	Water Temp. A/Ambient Temp. 1
	Water Temp. B/Ambient Temp. 2
Heating Curve	Water Temp. C/Ambient Temp. 3
	Water Temp. D/Ambient Temp .4
	Water Temp. E/Ambient Temp. 5
H.2. If no heating curve is desired:	
Heating Curve	Set Temp. for Heating (without heati curve)

C. Configuring the set water cooling temperature (if applicable):

5.1. Activate the mixing valve to manage the second circuit:

Note: This pair of settings will interpret "Heating/Cooling Circuit 2 as the low demand distribution system, requiring a lower set temperature for heating and higher set temperature for cooling.

6. Double-check to ensure that the Domestic Hot Water option is enabled under

- Sanitary Hot Water \checkmark
- 7. Configure the desired setpoint for water temperature (default set to 50°C): 50℃

3. Assembly Configurations – Drawing 10

Assembly 10: Wiring Diagram

To achieve successful operation at a minimum, ensure the ports below are properly connected.

For connection for mixing valve 2, please refers to the appendix A (on page 75-76) of this manual for more information.

Software: Basic Settings

1.Set the needed working modes of the unit via the menu

Sanitary Hot Water	
Heating	
Cooling	<

H.Configuring the set water heating temperatures:

C.Configuring the set water cooling temperature (if applicable):

3.Locate and activate the buffer tank and appropriate pumps under

Buffer Tank	
P1 for Heating Operation	
P1 for Cooling Operation	\triangleleft
P1 with High Temp. Demand	

47

If cooling function is desired, ensure these sections are configured.

Software: Basic Settings (continued)

3.(cont.) Configure the water pump to operate for heating or cooling:

P2 for Heating Operation	
--------------------------	--

- 4. Temperature configuration options for Heating/Cooling circuit 2 are found under
- **H.** configuring the set water heating temperatures:

H.1. Setting a heating curve:

	Water Temp. A/Ambient Temp. 1	40°C
	Water Temp. B/Ambient Temp. 2	37℃
Heating Curve	Water Temp. C/Ambient Temp. 3	33℃
	Water Temp. D/Ambient Temp .4	29°C
	Water Temp. E/Ambient Temp. 5	25℃
H.2. If no heating curve is desired:		
Heating Curve	Set Temp. for Heating (without heating curve)	35°C

C. Configuring the set water cooling temperature (if applicable):

4.1. Activate the mixing valve to manage the second circuit:

Note: This pair of settings will interpret "Heating/Cooling Circuit 2 as the low demand distribution system, requiring a lower set temperature for heating and higher set temperature for cooling.

5. Double-check to ensure that the Domestic Hot Water option is enabled under

6. Configure the desired setpoint for water temperature (default set to 50° C):

Setpoint DHW 50℃

4.1. Sanitary Hot Water Applications

In this configuration, hot water circulating through the heat pump circuit floods the tank. This submerses the coils, which run the shower water circuit, resulting in a heat exchange interaction. A mixing valve ensures that temperatures do not exceed 60° C

The primary advantages of this application include:

- Sanitization is not necessary, since the sanitary hot water is heated by going through the coils.
- Direct connection between heat pump and tank, ensuring effective water flow rates for it.
- Energy savings from not requiring sanitization.

A disadvantage of this configuration is a decreased volume of sanitary hot water available when compared with other configurations, due to the smaller diameter of the transfer coils.

4.1. Sanitary Hot Water Configurations

4.1.2.Configuration 2

In this configuration, hot water from the heat pump circuit runs through the coils in the tank. Sanitary water fills the tank and is heated by the coils before exiting the tank towards the shower head. This configuration also does not require sanitization.

The primary advantage to this configuration is that it can supply a greater volume of sanitary hot water.

Disadvantages include:

- The coil may create enough resistance to water flow that a secondary heat pump could be needed, in order to ensure that a proper flow rate, efficiency, and proper operation are maintained.
- The capacity of the coils will need to be greater than or equal to the maximum output of the unit. (Max. heat pump output occurs at 7°C Air/45°C Water)

This configuration is optimal for a heat pump that does not exceed 14kW.

4.1. Sanitary Hot Water Configurations

4.1.3.Configuration 3

A water-to-water plate heat exchanger can be substituted for the coil inside water tank, as shown below:

Note: The heat pump unit can control the sanitary hot water circulation pump by connecting it to port "P3".

This configuration will ensure a sufficient volume, as well as flow rate, of hot sanitary water, at the additional cost of adding the plate heat exchanger.

Whichever application is chosen, it is recommended to install a manual mixture valve between the city water inlet and hot water outlet. This will maximize utilization of hot water from the tank while also preventing scalding shower water temperatures.

Also, if the tank permits, it is optimal to utilize a 4-way mixture valve, as depicted in the picture below. This will promote more even and steady distribution of hot water from the tank.

4.1. Sanitary Hot Water Configurations

4.1.4. Note about the Heating/Cooling Distribution System

Users are heavily recommended to install a buffer tank into the chosen configuration, especially when the method of hot water distribution is below 20L/W of water volume.

The buffer tank should be installed between the heat pump and the distribution system, in order to:

- Ensure the heat pump unit provides a stable and sufficient water flow rate.
- Minimize fluctuation of the system's heating/cooling load by storing unused heat.
- Increase capacity of water volume distribution, which helps ensure proper heat pump operation.

If the method of hot water distribution is capable of dispersing a large enough flow rate, a buffer tank can be excluded from installation into the configuration. If so, please move the cooling/heating temperature sensor (TC, #10 on page 1) to the water return pipe, so that fluctuations of water temperature due to compressor speed changes are minimized.

4.2. Heating and Cooling Circuits

This heat pump unit is capable of controlling two completely different heating and cooling circuits, as shown in the following images.

Configuring the temperatures for circuits 1 and 2 can be done via the "Heating and Cooling Circuit" menus.

If only one circuit is desired, then "Heating and Cooling Circuit 2" can be set to OFF.

4.2.1. Heating & Cooling Circuits

The basic understanding of these settings is found under your the software section of your particular assembly walkthrough in Chapter 3. A more detailed explanation can be located in the user's manual.

4.2. Heating and Cooling Circuits

4.2.2. Mixing Valves MV1 and MV2

	High Temperature Limit	40°C
	Mixing Valve	
Heating/ Cooling circuit 1		
		44.40
	Heatinggooling Circuit 2	
	Set temp. For Cooling	24℃
2	Set Temp, for Heating (without heating curve)	35°C
Heating/	Mbing Valve	
Cooling circuit 2	Heating Curve	

If the system water temperature may be higher (or lower) than the temperatures needed for circuit 1 (or circuit 2) in a heating or cooling operation, then a mixing valve can be added to the circuit, and connected to the MV1 (or MV2) port on the indoor unit.

The unit will control the mixing valve, continuously mix the supply, and return the water of the circuit to have its temperature read via the TV1 (or TV2) until the value set under the above menus is achieved.

TV1 and/or TV2 should be activated on the installer's level via the "Heating and Cooling Circuit" menu.

Note: A mixing valve is needed, if:

- The system has two circuits that require different water temperatures. The heat pump will have to take the higher/lower (depending on whether heating/cooling) settings of the two circuits as the set temperature for the heat pump. The mixing valve ensures correct water temperature circulation in this instance.
- The system has other heating sources inside that are not controlled by the heat pump. In this case, the actual water temperature may exceed the set temperature.

4.2. Heating and Cooling Circuits

4.2.3. Circulation Pump Control

Buffer Tank	
P1 for Heating Operation	
P1 for Ccoling Operation	
P1 with High Temp. Demand	
P2 for Heating Operation	
P2 for Cooling Operation	
P2 with High Temp. Demand	

Note: P1 is circulation pump 1, P2 is pump 2

- "Buffer Tank" should be checked if one is installed between the heat pump and distribution system.
- "P1/P2 for Heating/Cooling Operation" sets that circuit's pump to work for heating or cooling.

If "Buffer Tank" is NOT checkmarked, both P1 and P2 will only work when the compressor is working in the same mode that the pump is set to. So, if P1 is set to "P1 for Heating Operation", P1 will activate ONLY when the compressor is working in heating mode. If P1 is checkmarked for both "Heating" and "Cooling" operations, then P1 will be ON when the compressor is working in both heating and cooling modes. The pump stops when switched to DHW mode, or after the set temperature is reached.

If "Buffer Tank" IS checkmarked, both P1 and P2 will work as long as there is demand from the distribution system, as per the pump setting. The following must also be fulfilled:

- Actual temperature in the buffer tank (detected via TC) is equal or above 20°C (in heating)
- Actual temperature in the buffer tank (detected via TC) is equal or below 23°C (in cooling)

Even if the unit is working in DHW mode, or the set temperaure is reached, the circulation pump will start to work as long as there are heating/cooling demands, and TC is fulfilled as per the above.

• "P1/P2 with High Temp. Demand" sets P1/P2 to automatically stop if the signal for "high demand" is off. For more information regarding this setting, please refer to part D on page 62.

NOTE: It is very important to place the temperature sensor (TR) in a central location with good circulation, with no hot or cold equipment nearby, in a column or interior wall, or somewhere similar.

4.3. Indoor Unit Installation

4.3.1. Choosing an installation location

- The indoor unit should be installed indoors, mounted on a wall, and have the water outlet aimed downwards.
- 2) The indoor unit must operate in a dry, well-ventilated location.
- 3) There should be no volatile, corrosive, or flammable liquids or gases nearby.
- 4) Ideally, the unit should be as close as possible to the water supply system.
- 5) Try and leave enough space in the area around the unit to simplify future maintenance.

The minimum dimensions of surrounding gaps suitable for the unit to operate correctly is as follows:

4.3. Indoor Unit Installation

4.3.2. Installation Process

Choose a very firm wall for installation. If it's a wooden wall, use self-tapping screws instead of expansion bolts. Hang the mounting board onto the wooden wall directly, without drilling holes. Ensure the wooden wall is sufficiently firm. Walls that are too thin, brittle, or humid are not inadequate for installation.

1) Take out the expansion bolts and mounting board accessory. Place the mounting board on the wall horizontally. Mark the bolting location onto the wall.

2) Drill holes with the proper diameter for the bolts to catch through.

3) Unscrew the nuts from the expansion bolts.

4) Loosely fix the mounting board onto the expansion bolts. Do not tighten yet.

5) Using a hammer, tap the expansion bolts into the drilled holes. Fasten the nuts with a wrench to fix the mounting board to the wall.

6) Hang the indoor unit onto the mounting board, making sure it is stable and placed well. The installation is then complete.

4.4. Outdoor Unit Installation

4.4.1. Choosing an installation location

- 1) The outdoor unit can be installed in an open safe, corridor, balcony, roof, or hung onto the wall.
- 2) Install in a dry, open airspace. Humidity can cause corrosions or short-circuiting to the electronics.
- 3) There should be no volatile, corrosive, or flammable liquids or gases nearby.
- 4) Do not place the unit nearby to bedrooms and living rooms. There will be noise when it is running.
- 5) In harsh climates of snow or sub-zero temperatures, ensure the unit is raised 50cm above ground.
- 6) It is recommended to install an awning above the unit, to prevent snow from clogging open parts.
- 7) Ensure there is proper drainage around the unit. Tilt the unit by 1cm/m for rain water evacuation.
- 8) Do not install the unit close to kitchen exhaust ports. It is difficult to clean oil from smoke exhaust.
- 9) The location of installation must provide sufficient space around the unit. The minimum dimensions of surrounding gaps suitable for the unit to operate correctly is as follows:

4.4. Outdoor Unit Installation

4.4.2. Installation Process

For the installation, users can either use the dedicated mounting bracket provided by the supplier, or prepare a suitable bracket that meets the following requirements.

- 1) The unit must be supported by either flat concrete blocks, or a dedicated mounting bracket. The bracket should be able to support at least 5x the unit's weight.
- 2) After the bracket is fixed, ensure each of the nuts are fully tightened.
- 3) Users should double check to make sure the unit's installation is sufficiently sturdy.
- 4) The bracket material can be stainless or galvanized steel, aluminum, or other proper substitutes.
- 5) The user can opt to use two concrete blocks, or a raised concrete platform, instead of a dedicated mounting bracket. Ensure that the unit is securely fastened after installation.
- 6) Use the oudoor unit's dimensions when choosing a suitable wall bracket.

4.5. Wiring

4.5.1. Explanation of Terminal Block 1

A: Unit power supply

This should be connected directly to the city power supply. For all units, ensure that a cable of sufficient gauge is used. (found on nameplate)

E: Outdoor unit power supply

If the outdoor unit draws power from the indoor unit, this terminal should be connected through cable between the appropriate ports (see Appendix for wiring diagrams).

4.5. Wiring

4.5.2. Explanation of Terminal Block 2

A, B: Water Pump

A-Pump 1: Pump for Heating & Cooling Circuit 1, B-Pump 2: Pump for Heating & Cooling Circuit 2,

If there is an external water pump in heating, cooling and hot water system, it can be connected to these ports, to be under the control of heat pump,

4.5. Wiring

4.5.3. Explanation of Terminal Block 3

- **A:** Signal output to Auxiliary Heater (AH), which will be used as auxiliary heating source for both heating and DHW operation.
- **B:** Signal output to Hot Water Tank Backup Heater (HWTBH), which will be used as backup heating source for DHW operation only.
- **C:** Signal output to Heating Backup Heater (hbh), which will be used as backup heating source for Heating operation only.
- **D:** 3-way motorized valve diverting the water.

4.5. Wiring

4.5.4. Explanation of Terminal Block 4

A: Signal cable between indoor and outdoor unit.

B, C: Cooling and Heating Mode Switchovers

This unit is capable of switching between heating and cooling automatically, according to the ambient temperature, or external signal input. Please refer to the user's manual for more detailed explanantions on ambient temperature setting. For external signal input, the external signal should be connected to "Cool Mode Switch" for cooling operation, and "Heat Mode Switch" for heating operation.

4.5. Wiring

4.5.5. Wiring Process Preliminary Precautions

- Please ensure that a suitable circuit breaker is used for the heat pump.
- The power supply to the heat pump unit must be grounded.
- Wiring should be done by a licensed professional, and comply with industry regulations.
- The unit should be completely powered off before any wiring is done.
- Cables should be properly fastened into place, to prevent loosening from occurring.
- No cable should be fastened to another.
- The power supply should be compliant to all standards located in the rating label.
- The power supply, necessary cables, and sockets should fully meet the input power requirements of the unit.

4.5. Wiring

4.5.5. Wiring Process

1) Open the indoor unit's front panel and remove the electrical box cover.

2) Acquire one (or two) power cable(s) of suitable length that is compliant to all local safety regulations.

- A. Insert one end of this cable through the cable gland on the bottom of the indoor unit, and connect it with the heat pump power supply terminals (PE, N, L).
- B. Fasten the cable gland to ensure the cable won't loosen.
- C. Connect the other end of the cable to the city power supply.

4.5. Wiring

3) Connect the auxiliary heater power cable:

Acquire a power cable of suitable length that is compliant to all local safety regulations.

- A. Insert one end of this cable through the cable gland on the bottom of the indoor unit, and connect it with the AH power supply terminals (PE, N1, L1)
- B. Fasten the cable gland to ensure the cable won't loosen.
- C. Connect the other end of the cable to the city power supply.

4.5. Wiring

4) Connect the signal cable between the indoor and outdoor unit: Retrieve the signal cable from the accessories bag.

- A. Insert one end of this cable through the cable gland on the bottom of the indoor unit, and connect it to A and B on the appropriate terminal block.
- B. Fasten the cable gland to ensure the cable won't get loosen.
- C. Connect the other end of the cable to the terminal block on the outdoor unit. A and B on the indoor unit should be connected with A, B, and G on the outdoor unit, otherwise communication failure error may occur.

4.5. Wiring

5) Connect the powercable between the indoor and outdoor unit:

Acquire a 3-core power cable of sufficient length that is compliant to all local safety regulations.

A. Insert one end of this cable through the cable gland on the bottom of the indoor unit, and connect it to A and B on the appropriate terminal block.

B. Fasten the cable gland to ensure the cable won't get loosen.

C. Connect the other end of the cable to the terminal block on the outdoor unit. A and B on the indoor unit should be connected with A, B, and G on the outdoor unit, otherwise communication failure error may occur.

4.5. Wiring

6) Connect the sensors and communication cables to the indoor unit.

- Retrieve all sensors and communication cables from the accessories bag.
- Connect all sensors to the communication cables, and insert the male end into the indoor unit through the cable glands.
- Connect them to the female quick connectors inside the indoor units.
- Place all sensors in the correct positions.
- After everything is connected, fasten the cable glands to prevent cables from loosening.

The wiring process is then complete.

4.6. Refrigerant Pipework

4.6.1. Amount of Refrigerant:

For all units, the refrigerant included inside is sufficient for up to 5 meter long piping kits. If the piping is beyond 5m, it is necessary to add 40g of refrigerant per additional meter. It is recommended to keep the length of the refrigerant piping to under 12m.

Ex. If the pipe is 9m in length, 4x40g = 160g of refrigerant will need to be added.

4.6.2.Precautions

Because the refrigerant pipe transfers heat to the entire system, any insufficient vacuuming and/or leakage of the refrigeration system will lead to decreased performance. Therefore, please ensure the following:

- Select a high quality refrigerant pipe that conforms to the pressure standards of Refrigerant R410A.
- Insulate the pipe before connecting it.
- Avoid bending/deforming the refrigerant pipe as much as possible.
- Ensure the inside of the pipe is completely dry, to avoid trapping moisture in the pipeline.
- Any walls or separators between the indoor and outdoor unit should have a wall sleeve fixed to the hole, which the installer should drill in order to accomodate the refrigerant pipe.
- Do not insulate the refrigerant pipes together. (Fig.1) Each pipe requires it's own insulation. (Fig.2)

4.6. Refrigerant Pipework

IMPORTANT:

The radius of pipe bends cannot be less than 15 cm. Use a cardboard/paper template to verify it is above this. Run the power cord through the pipe as it bends. Create the bends carefully and gradually. Do not bend the pipe against an edge.

4.6.3.Installation:

Please connect the refrigerant pipe as follows:

4.6. Refrigerant Pipework

4.7. Water Pipework

After installation of the unit is complete, connect the water inlet to outlet pipe according to local regulations, and confirm that there is flow. Have the piping pressure tested and cleaned before use.

4.7.1. Filtration

A mesh filter should be installed between the water inlet of the unit and the water tank in order to keep collect any impurities and preserve water quality. The filter should be aimed down like below.

It is highly recommended to install check valves on both sides of the filter, to make cleaning or changing the filter later on easier.

4.7.2. Insulation

All pipes running hot water should be well-insulated. No gaps should exist between insulation and outer pipe. Keep the check valves uncovered for future maintenance.

Before finishing, ensure that there is sufficient pressure to send water to the required heights. If not, a water pump can be added in order to increase pumping head.

4.7.3. Water Quality Standards

- Water should contain less than 300 ppm of chloride (in temperatures less than 60°C)
- The pH value of the water should be between 6 to 8.
- No water containing ammonia should pass through this unit.

If the water quality is bad or the water flow is too weak, scale formation and clogging may eventually occur, which lowers efficiency of cooling and heating and can cause abormalities to occur.

Use pre-cleaned water, or purified water. Good water quality keeps the unit running in high efficiency.

4.8. Test run

After installation finished, please fulfill the water system with water and purge out air in the system before start-up.

4.8.1. Before start-up

The list of verifications below must be performed before the unit starts up, to ensure best possible conditions for smooth long-term operation. The list is not exhaustive, and should only be used on a minimum reference basis:

- 1) Make sure the fans are rotating freely.
- 2) Confirm correct flow directions in water piping.
- 3) Verify all system piping matches installation instructions.
- 4) Check the voltage of the unit power supply and make certain it complies to authorized limitations.
- 5) The unit must be properly grounded.
- 6) Check for the presence of any damaged devices
- 7) Check all electrical connections and ensure they are secure.
- 8) Make sure there are no leaks in the piping and the space is well-ventilated.

Fix any problems above if they occur. If everything above is satisfied, the unit can start up.

4.8.2. Starting Up

When the installation of the unit is completed, all water system pipes are confirmed to be well-connected, air purging is done, there are no leakages or other problems, the unit can be powered on.

Turn on the unit by pressing the on/off button on the operation panel. Listen carefully for any abnormal noise or vibrations, and ensure the display of the wired controller is normal.

After the unit has been on for 10 minutes and no abnormalties have occurred, the start-up process is complete. For problems and troubleshooting, please refer to the Service and Maintenance manual.

Final note: It is suggested to not run "heating" or "hot water" mode during ambient temperatures above 32° C, otherwise the unit may easily enter protection mode.

Appendix A: Wiring

Power Siwtch		Indoor PCB
Сом	Siwtch V+	Indoor PCB
Connection of Water Mixing Valve 1	24V DC Power Supply for mixing valve	0~10V DC Control Signal for mixing valve 1
Power Siwtch		Indoor PCB
Power	Siwtch V+	Indoor PCB Cn217 Port
Connection of Water Mixing Valve 1	24V DC Power Supply for mixing valve	0~10V DC Control Signal for mixing valve 1

Appendix A: Wiring

Appendix B: Wiring

Indoor — NPH6-V7-S NPH9-V7-S NPH11-V7-S NPH13-V7-S

TAKE CARE!

The specifications are subject to change without prior notice.

For actual specifications of the unit, please refer to the specification stickers on the unit.

Appendix B: Wiring

Outdoor ——NP6-V7-S

TAKE CARE!

The specifications are subject to change without prior notice.

For actual specifications of the unit, please refer to the specification stickers on the unit.

Appendix B: Wiring

Outdoor ——NP9-V7-S NP11-V7-S NP13-V7-S

TAKE CARE! The specifications are subject to change without prior notice. For actual specifications of the unit, please refer to the specification stickers on the unit.

Thank you for purchase of our quality product. Please read this manual thoroghly before use , and follow the instructions carefully in operating the unit in order to prevent damages to either the device or persons.

Product specifications are subject to change with improvements, without prior notice. Please refer to the specification sticker on the unit for the most recent specifications. Please refer to the contact information below for technical support and enquiries:

E-mail:

Telephone:

NCSMS00284A00-A July,2019