

AW45-EVI-M AW90-EVI-M AWC45-90-M

DC Inverter Air to Water Heat Pump

User's manual

Before operating this product, please read the instructions carefully and keep this manual for future use.

Catalogue

1. Product Specifications 1-1 Specifications

1-1	Specifications	3
1-2	External Dimensions	5
1-3	Center of Gravity	8

3

2. Product Data

. Product Data	10
2-1 Electrical Wiring Diagrams	13
2-2 Capacity tables	13
2-2.1 Correction by temperature	13
2-2.2 Water pressure drop	15
2-2.3 Operation temperature range	15

3. Installation	16
3-1 Selecting the Installation Site	16
3-1.1 Installation Conditions	16
3-1.2 Installation space requirements	17
3-2 Unit Installation	17

. System Design	18
4-1 Water Pipe Installation	18
4-1.1 Caution for water pipe installation	18
4-1.2 Installing the water pipes	20
4-2 Ensuring enough water in the water circuit	20
4-2.1 Required amount of water	20
4-3 Inlet/Outlet pipe connection size and material	20

5. Wiring Design	21
5-1 Connect to power supply	21
6. Touchscreen Panel Overview	23
7.Failure code list	59

1-1. Specifications

Model information				
Model			AW45-EVI-M	AW90-EVI-M
Performance				
Min/max heating capacity (1)		kW	13.7~43.7	27.4~89.6
El. heating power input min/max	(1)	W	3325~12077	6650~24254
C.O.P min/max (1)		W/W	3.62~4.42	3.68~4.50
Min/max heating capacity (2)		kW	13.6~43.2	28.2~89.5
El. heating power input min/max	(2)	W	4156~14308	8212~28300
C.O.P min/max (2)		W/W	2.99~3.38	3.16~3.48
SCOP - Average climate, low tem	perature	W	4.12	4.2
Energy class			A++	A++
Min/max cooling capacity (3)		kW	17.7~32.0	36.4~66.0
El. coolimg power input min/max	x (3)	W	3491~11771	6982~23742
E.E.R. min/max (3)		W/W	2.72~5.09	2.8~5.19
Min/max cooling capacity (4) (A	A35/W7)	kW	11.2~29.9	23.4~61.2
El. cooling power input min/max	(4)	W	3529~11640	6880~23450
E.E.R. min/max (4)		W/W	2.57~3.3	2.61~3.4
SEER - Cooling		W	/	/
Min/max ambient working temp.	in heating mode	°C	-25-45	-25-45
Min/max ambient working temp.	in cooling mode	°C	20-45	20-45
Max flow temp. in heating mode		°C	55	55
Min flow temp. in heating mode		°C	10	10
Min flow temp. in cooling mode		°C	5	5
· · ·	Outdoor unit	dB (A)	66	69
Sound power level	Indoor unit	dB (A)	/	/
Electrical heaters	•	· · · · ·		•
Heating cable - condense water		W	/	/
Compressor heater		W	30	30*2
Anti - Freeze el. heater	Power supply	V / Hz /	/	/
Anti - Freeze el. heater	Rated power	W	/	/
Power supply				
	Outdoor unit	V / Hz / Ph	400V/50Hz/3ph	400V/50Hz/3ph
Power supply - Outdoor unit	Fuse Outdoor unit	А	3p/40A/C	3p/80A/C
	Indoor unit	V / Hz / Ph	/	/
Power supply - Indoor unit	Fuse Indoor unit	А	/	/
/	•			
	Quantity	pcs	1	2
F	Airflow	m³/h	13500	13500*2
Fan	Rated power	W	800	800*2
	Blade diameter	mm	760	760*2
Plate heat exchanger	Water press. drop	kPa	80	100
Plate heat exchanger	Piping connection	Inch	2"Inner gorve	Dn65 Flange
	type	/	R410A	R410A
Definement	chrage	kg	8kg	8kg*2
Refrigerant	GWP	/	1890	3780
	t CO ₂ Equiv.	/	0	0
	Manufacturer	/	SIAM	SIAM
<i>a</i>	type	/	Inverter+EVI	Inverter+EVI
Compressor	Compressor oil	type	FVC68D	FVC68D
	Comp. oil volume	L	2.3	2.3*2

Model			AW45-EVI-M	AW90-EVI-M
Hydraulics				
Minimum water flow		m³/h-l/s	5m³/h	10m³/h
Nominal water flow		m³/h	8m³/h	16m³/h
Hydraulic connections		Size	2"Inner gorve	Dn65 Flange
Flow switch	Manufacturer		Hengsen	Hengsen
Flow switch	type		SLG-01	SLG-01
Dimensions and weight				
Dimensions net (L x D x H)	Outdoor unit	mm	1010*1160*1650	2160*1200*1650
Dimensions net (L x D x H)	Indoor unit	mm	385*476*150	385*476*150
Dimensions Brutto (L x D x H)	Outdoor unit	mm	1030*1180*1750	2180*1220*1750
Dimensions Brutto (L x D x H)	Indoor unit	mm	400*490*180	400*490*180
Nat maint	Outdoor unit	kg	300	600
Net weight	Indoor unit	kg	9	9
Drutto weight	Outdoor unit	kg	370	680
Brutto weight	Indoor unit	kg	10	10

(1) Heating condition: water inlet/outlet temperature: 30 °C/35°C, Ambient temperature: DB 7 °C /WB 6 °C ;

(2) Heating condition: water inlet/outlet temperature: 40°C/45°C, Ambient temperature: DB 7 °C /WB 6 °C;

(3) Cooling condition: water inlet/outlet temperature: 23 °C/18 °C, Ambient temperature: DB 35 °C /WB 24 °C;

(4) Cooling condition: water inlet/outlet temperature: $12^{\circ}C/7^{\circ}C$, Ambient temperature: DB 35 °C /WB 24 °C.

1-2. External Dimensions AW45-EVI-M

Unit:mm

AW90-EVI-M

Unit:mm

6

AWC45-90-M

1-3. Center of Gravity AW45-EVI-M

1-3. Center of Gravity

AW90-EVI-M

9

2-1.Electrical Wiring Diagrams AW45-EVI-M

AW90-EVI-M

The specifications are subject to change without prior notice. For actual specifications of the unit, please refer to the specification stickers on the unit.

AWC45-90-M

The specifications are subject to change without prior notice. For actual specifications of the unit, please refer to the specification stickers on the unit.

2-2. Capacity tables

2-2-1. Heating capacity curve in various conditions AW45-EVI-M

AW90-EVI-M

2-2-2. Water pressure drop

AW45-EVI-M AW90-EVI-M

2-2-3. Operation temperature range

3. Installation

3.1. Selecting the Installation Site

3.1.1 Installation Conditions

Select a installation site that meets the following conditions:

- Unit can have free air circulation.
- The noise from the unit will not be a problem.
- No strong winds.
- Condense water from the unit can be drained.
- Unit has open space as shown in the drawing 3.1.2.
- Stand of the unit must be at least 50cm high in cold areas, to avoid snow accumulation.

and of the bottom plate installation holes.

3. Tighten nuts with a wrench.

3. Installation

3.1.2. Installation space requirements1.Single unit installation

Secure enough space around the unit as shown in the figures below.

side-by-side installation

3.2. Unit Installation

The unit must be installed on flat concrete blocks, or a dedicated mounting bracket.

4. System Design

4.1. Water Pipe Installation

4.1.1. Caution for water pipe installation

The installation should be done by qualified installer. Before installation, please make sure the power supply is cut off.

4. System Design

Attention: Maximum 16 units can be connected in Parallel.

4.1.2. Installing the water pipes

Installing the Filter

A mesh filter must be installed in front of the water inlet of the unit and water tank, to keep the water quality and collect impurity contained in the water. Take care to keep the water filter mesh towards the bottom. Ball valve is recommended to be installed at both sides of the filter, so as to clean or change the filter in a easier way.

4-2. Ensuring enough water in the water circuit

4.2.1.Required amount of water

Buffer tank is to be included in the system,

It should be installed between heat pump and distribution system, in order to:

- 1) Ensure heat pump unit has stable and enough water flow rate.
- 2) Store heat to minimize fluctuation of system heating/cooling load.
- 3) Extend the water volume of distribution system for proper working of heat pump unit.

Model	Minimum amount of water (l	
AW45-EVI-M	360	
AW90-EVI-M	720	

4-3. Inlet/Outlet pipe connection size and material

The table below shows the inlet/outlet pipe connection size

Inlet/Outlet pipe connection size

Model	Inlet pipe connection	Outlet pipe connection
AW45-EVI-M	2"Female screw	2"Female screw
AW90-EVI-M	Dn65Flange	Dn65Flange

5. Wiring Design

5-1. Connect to power supply

(1)Terminal Block Arrangement

To remove the front panel of the control box, unscrew the four screws and pull the panel forward and then down.

5. Wiring Design

Dip switch (SW1) is used to set the system number.

When multiple units work together, please set the dip switch as follows.

The Dip switch is detected only once when the unit is powered on. Please power the unit once again after reset the dip switch.

The value of dip switch: OFF=0,ON=1.

System number	SW1-1	SW1-2	SW1-3	SW1-4
#1	0	0	0	0
#2	0	0	0	1
#3	0	0	1	0
#4	0	0	1	1
#5	0	1	0	0
#6	0	1	0	1
#7	0	1	1	0
#8	0	1	1	1
#9	1	0	0	0
#10	1	0	0	1
#11	1	0	1	0
#12	1	0	1	1
#13	1	1	0	0
#14	1	1	0	1
#15	1	1	1	0
#16	1	1	1	1

Dip switch setting for Sw1

1. Main Page

1. Main Page

2. Zone 1

Click to make the settings for distribution system Zone 1.

2. Zone 1

Set temp. for heating (fix flow water temperature)	40°C	

If the heating curve feature is DISABLED, a fixed heating water temperature can be set via this parameter.

Set temp. for cooling (fix flow water temperature)	15℃	~

If the cooling curve feature is DISABLED, a fixed cooling water temperature can be set via this parameter.

High temperature limit	50℃
Low temperature limit	15℃

These two parameters should only be configured by the installer to configure a safe set temperature range for circuit 1.

Set whether you would like the heating curve feature to be used. If this box is left unchecked, the system can follow a fixed water temperature that is set.

If this box is checked, you will be able to create a custom heating curve by setting the parameters in next page.

System 1 heating curve parallel move	0°C	

Adjust the heating curve setting for heating & cooling Zone 1, based on the set heating curve (parallel move).

Water / Outdoor temp. 1 - HC1	50°C
Water / Outdoor temp. 2 - HC1	45℃
Water / Outdoor temp. 3 - HC1	40°C
Water / Outdoor temp. 4 - HC1	35℃

30°C

Set 5 different set water temperature, based on 5 different outdoor ambient temp values (set in "Heating Configuration" menu), to generate a heating curve set for Zone 1.

Activate Cooling Curve function, if needed. If not, a fixed set temperature for cooling can be set in page 1.

Water / Outdoor temp. 1 - CC1	20°C
Water / Outdoor temp. 2 - CC1	18℃
Water / Outdoor temp. 3 - CC1	15℃

Set 3 different set water temperature, based on 3 different outdoor ambient temp value (set in "Cooling Configuration" menu), to generate a cooling curve set for Zone 1.

Mixing valve ZONE 1

Check this box if a mixing valve is connected. If not, leave this unchecked.

P1 for heating operation	
P1 for cooling operation	
P1 with high temp. demand	
P1 Timer function	

These parameters are used for setting the functionalities of the external circulation pumps P1 for Zone 1.

If Zone 1 is used for heating operation, "P1 for heating operation" should be activated.

If Zone 1 is used for cooling operation, "P1 for cooling operation" should be activated.

If Zone 1 needs to work when system get a "high temp. demand" signal only (or say this is a high temp. circuit), "P1 with high temp. demand" should be activated.

If Zone 1 should work only in the set time period, "P1 Timer function" should be activated.

P1 Timer			
T I TIMO			

If "P1 Timer function" is activated, P1 will only work in the time period set in "P1 Timer" menu.

P1 Interval working mode	
P1 ON duration	1min
P1 OFF duration	6min

If "buffer tank" menu (see in menu "System Configuration) is activated, P1 will always work if system had demanding, so to circulate the energy between buffer tank and distribution system. If "buffer tank" menu is not activated, P1 should stop working after compressor stops.

If P1 needs to work occasionally so to read the temperature in the system, "P1 Interval working mode" should be activated. After activated, P1 will work for "P1 ON duration" time everytime, after it stops for "P1 OFF duration".

3. Zone 2

Click to make the settings for distribution system Zone 2.

If you need a dual water temperature setting, please tick this item.

Set temp. for heating (fix flow water temperature)	45℃
Set temp. for cooling (fix flow water temperature)	20°C

If the heating/cooling curve feature is DISABLED, a fixed heating/cooling water temperature can be set via this parameter.

High temperature limit	50°C
Low temperature limit	15℃

These two parameters should only be configured by the installer to configure a safe set temperature range for circuit 1.

Heating curve 2 (HC2)	
Set whether you would like the second heating curve is If this box is left unchecked, the system can follow a f checked, you will be able to create a custom heating c	fixed water temperature that is set; If this box is
System 2 heating curve parallel move	0°C
Adjust the heating curve setting for heating & cooling (parallel move).	g Zone 1, based on the set heating curve
Water / Outdoor temp. 1 - HC2	50°C
Water / Outdoor temp. 2 - HC2	45°C
Water / Outdoor temp. 3 - HC2	40°C
Water / Outdoor temp. 4 - HC2	35℃
Water / Outdoor temp. 5 - HC2 What a custom heating curve looks like (Tsh = Set Heating Tempera	$30^{\circ}C$
Tsh	

Set 5 different set water temperature, based on 5 different outdoor ambient temp values (set in "Heating Configuration" menu), to generate a heating curve set for Zone 2.

Cooling Curve 2 (CC2)	
Activate Cooling Curve 2 function, if needed. If not, a fixed set temperature for cooling can be set in page 11.	
Water / outdoor temp. 1 - CC2	20°C
Water / outdoor temp. 2 - CC2	18°C
Water / outdoor temp. 3 - CC2	15℃

Set 3 different set water temperature, based on 3 different outdoor ambient temp values (set in "Cooling Configuration" menu), to generate a cooling curve set for Zone 2.

Mixing valve ZONE 2	

Check this box if a mixing valve is connected. If not, leave this unchecked.

P2 for heating operation	
P2 for cooling operation	
P2 with high temp. demand	
P2 Timer function	
P2 Timer	

These parameters are used for setting the functionalities of the external circulation pumps P2 for Zone 2.

If Zone 2 is used for heating operation, "P2 for heating operation" should be activated.

If Zone 2 is used for cooling operation, "P2 for cooling operation" should be activated.

If Zone 2 needs to work when system get a "high temp. demand" signal only (or say this is a high temp. circuit), "P1 with high temp. demand" should be activated.

If Zone 2 should work only in the set time period, "P2 Timer function" should be activated.

If "P2 Timer function" is activated, P2 will only work in the time period set in "P2 Timer" menu.

P2 Interval working mode	
P2 ON duration	1
P2 OFF duration	6

If "buffer tank" menu (see in menu "System Configuration) is activated, P2 will always work if system had demanding, so to circulate the energy between buffer tank and distribution system. If "buffer tank" menu is not activated, P2 should stop working after compressor stops. If P21 needs to work occasionally so to read the temperature in the system, "P2 Interval working mode" should be activated. After activated, P2 will work for "P2 ON duration" time everytime, after it stops for "P2 OFF duration".

The system begins working in DHW again once the temperature drops below the set temperature minus this ΔT temperature.

4. D.H.W

Click to check the information of the system.

Activate or not, the Timer function for DHW mode. Once activated, unit is only allowed to work in DHW mode in set time period, with set temperature.
DHW Timer 1	
DHW Set temp Timer 1	50℃
DHW Timer 2	
DHW Set temp Timer 2	51℃
DHW Timer 3	
DHW Set temp Timer 3	52℃

Three groups of timer setting and temperature setting, for DHW mode, if needed.

Unit will only work in DHW mode in the set timer ON period. In conflict time period, it will take higher set value as the set value for this time period for DHW mode.

DHW Pump interval working mode	
DHW Pump ON duration	1min
DHW Pump OFF duration	6min

After reach the set temperature for DHW, DHW pump should stop working, till water temperature drops down below DHW restart set point.

However, if DHW pump needs to circulate water occasionally to read the water temperature, "DHW Pump interval working mode" should be activated, which will make DHW pump work for "DHW Pump ON duration" time after stops for every "DHW Pump OFF duration" time.

5. Information

Click to check the information of the system.

6. Heating Configuration

Click to set basic setting for heating operation.

This is to configure a difference in temperature at which the unit restarts, after stops due to reach the set temp.

Activate or not, the Timer function for heating mode. Once activated, unit is only allowed to work in heating mode in set time period, with set temperature.

Heating timer 1	
Heating set temp Timer 1	40℃
Heating timer 2	
Heating set temp Timer 2	41℃
Heating timer 3	
Heating set temp Timer 3	42℃

Three groups of timer setting and temperature setting, for heating mode, if needed.

Unit will only work in heating mode in the set timer ON period. In conflict time period, it will take higher set value as the set value for this time period for heating mode.

Pump interval working mode in heating	
Pump ON duration in heating	1min
Pump OFF duration in heating	6min

This is setting for unit circulation pump.

If this function is not activated, unit circulation pump will keeps on working.

If this function is activated, unit circulation pump will stop working after compressor stops, but work for "Pump ON duration in heating" time after stops for every "Pump OFF duration in heating" time.

Outdoor temp. 1 - HC	-25℃
Outdoor temp. 2 - HC	-15℃
Outdoor temp. 3 - HC	-5℃
Outdoor temp. 4 - HC	5℃
Outdoor temp. 5 - HC	15℃

What a custom heating curve looks like (Tsh = Set Heating Temperature, Ta = Ambient Temperature):

Set 5 different outdoor ambient temperature value, for 5 different water temp set value (set in "Zone 1" menu), to generate a heating curve set for Zone 1.

7. Cooling Configuration

Click to set basic setting for cooling operation.

This is to configure a difference in temperature at which the unit restarts, after stops due to reach the set temp.

Activate or not, the Timer function for cooling mode. Once activated, unit is only allowed to work in cooling mode in set time period, with set temperature.

Cooling timer 1	
Cooling set temp Timer 1	15℃
Cooling timer 2	
Cooling set temp Timer 2	16℃
Cooling timer 3	
Cooling set temp Timer 3	17℃

Three groups of timer setting and temperature setting, for cooling mode, if needed.

Unit will only work in cooling mode in the set timer ON period. In conflict time period, it will take higher set value as the set value for this time period for cooling mode.

Pump interval working mode in Cooling	
Pump ON duration in cooling	1min
Pump OFF duration in cooling	6min

This is setting for unit circulation pump.

If this function is not activated, unit circulation pump will keeps on working.

If this function is activated, unit circulation pump will stop working after compressor stops, but work for "Pump ON duration in heating" time after stops for every "Pump OFF duration in heating" time.

Outdoor temp. 1 - CC	16℃
Outdoor temp. 2 - CC	26°C
Outdoor temp. 3 - CC	36°C

Set 3 different set water temperature, based on 3 different outdoor ambient temp values (set in "Cooling Configuration" menu), to generate a cooling curve set for Zone 2.

8. Advanced Setting

Click to set for more advanced setting.

Permission level End User For the safety purpose, some parameters can only be adjusted under the installer's permission level. This can be configured within this menu, by inputting a correct password. Control panel backlight light Allways ON Set a time limit for the touchscreen backlight. You can also set it to always be on. Language

For setting the system language.

Time

For setting the system clock date and time.

16.10.2020 08:39

English

ECO Operation

DHW ECO operation	
Outdoor temp. to start DHW ECO operation	-10°C

Heat Pump always try to finish its DHW work as soon as possible, to concentrate in heating or cooling operation. However, when outdoor ambient temperature is higher than a certain value, unit capacity would be more than enough, if it still works in high speed. Thus it would be wiser to lower the running speed at this moment for DHW. By activating this menu, compressor speed will be lowered to 50% for DHW production when outdoor ambient temperature is higher than set value "Outdoor temp. to start DHW ECO operation", for better efficiency.

Heating ECO operation		
Outdoor temp. to start heating ECO operation	-15℃	

Heat pump efficiency drops when outdoor air temperature drops. If outdoor air temperature is lower than a certain value, may more economic to use the external Heating Backup Heater(HBH) heating source for heating. If so, by activate "DHW ECO Operation" and set a proper setting of "Ambient Temperature to Start Heating ECO Operation", unit will stop compressor from working for heating but gives a "ON(close)" signal to external HBH heater when actual outdoor air temperature is lower than the set value.

Vacation Mode

Vacation mode	
During periods when users are away from home for exter reduce the preset temperatures for both sanitary hot wate save energy.	
Sanitary hot water temp. drop during vacation	20°C
Use this parameter to set the desired drop in temperature mode function is active. This number is based on the stan	
Heating water temp. drop during vacation	20℃
Use this parameter to set the desired drop in temperature	of the water used for heating for when the

Use this parameter to set the desired drop in temperature of the water used for heating for when the vacation mode function is active. This number is based on the standard heating value set.

Vacation start date	1.1.2020	
Set the date for when vacation mode begins.		

Vacation finish date 1.2.2020

Set the date for when vacation mode ends.

Reduce Mode&Quiet Operation

Reduced mode		

During periods of low demand, such as typical sleep or working hours, the system can operate based on a reduction of the set heating value in order to deliver better efficiency and cost savings.

Reduced mode - Temp. drop / rise	8°C

This parameter can be used to set the amount of temperature drop (in heating modes) or temperature rise (in cooling modes) in Reduced Mode. This drop/rise is based on the standard temperature that is set at the time of the setpoint operation.

Reduced mode - Timer		
This parameter can be used to set the s	 	

This parameter can be used to set the schedule of when the heating setpoint reduction can take place. Each day of the week is individually customizable with separate time blocks. The feature will only work during the times that are set here.

Quiet operation	_	

Turn On or OFF Quiet operation, for a better noise level during the set time period.

Quiet operation - Max allowable temp. drifting	5℃
Quiet operation - Timer	

When the unit is in quiet mode, its functional output may decrease due to both the fan and compressor operating at a restricted speed. Therefore, if the temp. begins to fluctuate outside of the ΔT value set here, the unit will automatically exit the quiet operation mode to ensure that the allowable temperatures are delivered.

This parameter can be used to set the scheduling of when the quiet operation mode takes place.

Anti-legionella

|--|

If the user will be drawing hot water directly from the hot water tank (HWT), then it will be required to heat the water within the tank to over 60° C at least once a week, for legionella prevention purposes. Please follow all local regulations regarding the proper usage of this function.

Anti-legionella - Setpoint	75℃	

This parameter can be used to set the value at which the system will heat the water to in order to achieve proper legionella prevention. Please follow all local regulations regarding this practice.

Anti-legionella - Duration	30Min
Anti-legionella - Max. running time	180Min

Set the duration of the anti-legionella operation. The time entered here will be how long the unit will keep the temperature set "Anti-legionella-Set point", in order to ensure that all bacteria in the shower water tank have been killed.

Set an absolute end time (operational ceiling limit) for the anti-legionella function, even if it has not been fully completed.

Room Temp. Effect on Curve

Room temp. effect on heating curve	

If activated this function, it will compare the current room temperature with below set "Ideal Room Temperature", and deduct the difference in the current value set for water temperature, in order to compensate the gap, in both HEATING and COOLING modes.

Ideal room temp. in heating	20°C	
Set the ideal room temperature in heating operation.		

26°C

Ideal room temp. in cooling

Set the ideal room temperature in cooling operation.

Internet Connection--WI-FI

Internet connection	OFF
Remote settings	
Connection to the server	Disconnected
Connection to the router	Disconnected
MAC	00-00-00-00-00
IP address	
SSID	
Password	
Server address	
Service port	0

Information of unit internet connection.

Floor Curing

Floor curing	
Floor curing current stage	0
Floor curing current stage running duration	0H
Floor curing current stage set temperature	0°C
Floor curing current stage valid running duration	0H
Floor curing total running duration	0Н
Highest water temp. in floor curing operation	0°C

After initial installation, or when a long period of unit inactivity has passed, the floor-heating system may have become damp within the concrete. Most of the heating capacity of the heat pump unit is consumed to dry up and evaporate the water in the concrete. The floor curing function is used to dry up the floor, to ensure the safe operation of the heat pump system.

Floor Curing Toggle this feature ON or OFF. This feature and the settings that follow will only be active if the checkbox is marked. When floor curing function is activated, it will run automatically the pre-set program, until the complete function is finished successfully (if not, a warning information will be shown on the screen. All the running data during the process will be recorded and can be viewd.

System Setting

Heat pump cascade quantity	4	

Set the system cascade unit quantity.

Sanitary hot water	
Heating	
Cooling	

Set the working modes need for this installation.

Load saved settings		
Save settings		

Used by the installer to save his setting, and load the saved setting.

9. System Configuration

Click to set for more advanced setting.

Electrical Utility Lock

Unit has anti-freezing protection. Set whether P1/P2 should be also activated, during anti-freezing operation.

Some electricity companies offer a special rate to households that lower their power consumption during predetermined "peak times". During these times, companies will send a signal to all houses, to receive feedback signals on whether or not certain electrical equipments are ON or OFF. Actiave this function, and set the signal type according to local regulation.

HBH(Heating Backup Heater)

Backup heating sources for heating
Our system can control two external heating source. One is default to have, called "AH", Auxilary Heater. One is an option, called HBH. Use this menu to set whether system has two-stage external heating source.
Priority for backup heating sources (HBH) Lower than AH
This provides options regarding the priority enforcement of HBH compared against the unit's AH. If the heat pump can't provide enough power when the system is operating in heating mode, it will turn on the AH or HBH automatically, according to whichever is set to have the higher priority. If the output power is still not enough after the AH or HBH has begun working, then the unit will turn on the lower priority backup heating source as well.

P0 running during HBH active	
Backup source start accumulating value (HBH)	120

Set whether unit circulation pump need to work, when HBH is working.

This is used to adjust how quickly the backup heating sources activate when the heat pump cannot provide sufficient power when in heating mode. The greater the value set, the longer it takes for the backup heating sources to begin working when the heat pump's capacity is not enough.

HWTBH = Hot Water Tank Backup Heater

Backup heating source	for sanitary hot water	
and the second se		

Set whether the system contains a HWTBH. Toggle this feature ON or OFF.

Priority for backup heating sources (HWTBH)	Lower than AH	
This provides options regarding the priority enforcement of AH. If the heat pump can't provide enough power when the s it will turn on the AH or HWTBH automatically, according to priority. If the output power is still not enough after the AH or the unit will turn on the lower priority backup heating source	ystem is operating in hot water mode, o whichever is set to have the higher or HWTBH has begun working, then	
P0 running during HWTBH active		
Set whether unit circulation pump need to work, when HWTBH is working.		

Water temperature rise reading interval (HWTBH)	5min	

The purpose of this parameter is to set the frequency of checks on the increase in temperature when the system is working in DHW mode. If the temperature is increasing too slowly during the interval of time set here, then the unit will activate other heating sources for the DHW operation. The smaller the value set, the more likely the unit is to activate AH or HWTBH for a faster DHW heating experience.

Others

Emergency operation

This parameter sets whether the unit should turn on the backup heating system automatically when the heat pump fails to work. Toggle this feature ON or OFF. Note:If this function is activated, then all users should be occasionally checking the working status of the heat pump unit, to ensure full functionality.

Diverting valve switching time	Immediate
Diverting valve - power on time	Always with Power
Configure how many minutes are spent switching (fi	· · · ·

water and the heating/cooling circuit, and the way of powering by the motorized diverting valve. Note: This parameter must comply with the capabilities of the motorized diverting valve, else the unit may not be able to work properly due to an insufficient water flow rate.

Air purge - heating/cooling circuit	
Air purge - DHW circuit	

Used for air purging. Once activated, unit and external pump will be turned ON, while the diverting valve will be switched to such circuit for air purging.

Mode signal output	OFF
Mode signal type	Normally Close

Activate to output a signal during set working period, if needed, for controlling other devices.

Set whether the system has buffer tank. It will affect the working of external pump P1/P2.

Sensor calibration

Heating / cooling stop - water ∆T 2°C

This is to configure a difference in temperature at which the unit will stop further operation.

DHW / Heating water temp. compensate type	No Compensate
Sensor calibration function.	
DHW / Heating water temp. compensate value	0°C

DHW/Heating Sensor calibration value.

Cooling water temp. compensate value	0°C	

Cooling Sensor calibration value.

Reset all setting to factory default setting.

Heating / cooling switch	Ambient Temp.
Outdoor temp. to start heating	20°C
Outdoor temp. to start cooling	25℃

This function's purpose is to set the conditions under which the unit starts cooling or heating automatically, according to:

• If set to "Ambient Temp." the system will automatically choose to enter a cooling or heating operation based on the outdoor ambient temperature, compared with the parameters set in below menus.

• If set to "External Signal Control", an external room thermostat or central control system in the building can control the cooling or heating requirements by connecting it to the respective signal ports. The signals are binary (simple 0 or 1). If the cooling port receives the signal, the system switches to cooling. The same goes for heating. Otherwise, the system will stay in standby mode.

• If set to "Ambient Temp. + External Signal Control", the unit will take both the ambient temperature and the external signal into consideration for the heating or cooling mode selection. Note: If the parameter is set to OFF, the auto-switch function will not be active. If this is the case, ensure that the Heating Water Circuit and Cooling Water Circuit are not set to ON simultaneously, as the system cannot determine the actual requirements due to mode conflict. To avoid mode conflict when in "External Signal Control" mode, please ensure that the external signal will not be activated at the cooling and heating ports at the same time.

Reset to factory settings

Reset all setting to factory default setting.

7. Failure code list

Failure from indoor PCB

Failure List	Failure Code	Possible Reasons
Communication failure between indoor PCB and operation panel	S01	Check whether communication cable between indoor PCB and operation panel is connected.
Communication failure between outdoor PCB and operation panel	S02	Check whether the outdoor PCB communication cable is connected.
Water Outlet Temp. Sensor Failure	S03	Check whether the outdoor temp. sensor is loose or broken.
Water Inlet Temp. Sensor Failure	S04	Check whether the indoor temp. sensor is loose or broken.
Outdoor PCB Failure	S05	Outdoor PCB is failed.
Communication failure of all outdoor PCB	S06	Check whether communication cables between all outdoor PCB and operation panel are connected.
Ambient temp. sensor failure	S07	Check whether all the outdoor PCB ambient temp. sensors are connected well.
All Outdoor PCB Failure	S08	Check whether all the outdoor PCB fail.
DHW Temp. Sensor Failure	S09	Check whether the DHW temp. sensor is loose or broken.
Heating/Cooling Temp. Sensor Failure	S10	Check whether the heating/cooling temp. sensor is loose or broken.
Room Temp. Sensor Failure	S11	Check whether the room temp. sensor is loose or broken.
Floor curing operation failure	S12	The floor curing process is failed.
3-way valve 1 operation failure	S13	The 3-way valve cannot be adjusted normally.
3-way valve 2 operation failure	S14	The 3-way valve cannot be adjusted normally.
3-way valve 1 temp. sensor failure	S15	Check whether the 3-way valve 1 temp. sensor is loose or broken.
3-way valve 2 temp. sensor failure	S16	Check whether the 3-way valve 2 temp. sensor is loose or broken.

7. Failure code list

Failure from outdoor PCB

Failure List	System1	System2	Possible Reasons
Ambient Temp. Sensor Failure	F01		Check whether the ambient temp. sensor is loose or broken.
Water Outlet Temp. Sensor Failure	F02		Check whether water outlet temp. sensor is loose or broken.
Water Inlet Temp. Sensor Failure	603		Check whether water inlet temp. sensor is loose or broken.
Compressor Discharge Temp. Sensor Failure	F04	F40	Check compressor discharge temp. sensor is loose or broken.
Compressor Suction Temp. Sensor Failure	F05	F41	Check compressor suction temp. sensor is loose or broken.
Outdoor Evaporator Coil Temp. Sensor Failure	F06	F42	Check outdoor evaporator coil temp. sensor is loose or broken.
Indoor Evaporator Coil Temp. Sensor Failure	F07	F43	Check indoor evaporator coil temp. sensor is loose or broken.
Economizer Inlet Temp. Sensor Faliure	F08	F44	Check economizer inlet temp. sensor is loose or broken.
Economizer Outlet Temp. Sensor Faliure	F09	F45	Check economizer outlet temp. sensor is loose or broken.
High Pressure Sensor Failure	F10	F46	Check high pressure sensor is loose or broken.
Low Pressure Sensor Failure	F11	F47	Check low pressure sensor is loose or broken.
Coil temp. sensor 2 for defrosting failure	F12	F48	Check coil temp. sensor 2 is loose or broken.
DC Fan Motor Failure	F13	F49	Check whether fan motor or driver PCB for fan motor are is broken, or the cable connection is well or not.
Temp. sensor for heating/cooling TH20 failure	F14		Check temp. sensor for heating/cooling Th20 is loose or broken.
Communication failure between main PCB and driver PCB for compressor	E01	E40	Check whether the cable between driver PCB for compressor and main PCB is loose or broken, or main PCB or driver PCB is broken.
Communication failure between main PCB and driver PCB for fan motor	E02	E41	Check whether the cable between driver PCB for fan motor and main PCB is loose or broken, or main PCB or driver PCB is broken.

Failure List	System1	System2	Possible Reasons
	E03	E42	1.Check whether there is gas in the refrigerant system and whether the vacuum is done completely.
Too High Compressor			2.Check whether the water flow rate is not enough in hydraulic system.
Discharge Temp. Failure Over 3 Times			3.Check whether the plate heat exchanger is blocked.
			4.Check whether the filter in refrigerant system is blocked.
			 system is blocked. 5.Check whether the refrigerant is leaking 1.Check whether there is too much refrigerant in the system. 2.Check whether there is gas in the refrigerant system and whether the vacuum is done completely. 3.Check whether the water flow rate is no enough in hydraulic system.
			1.Check whether there is too much refrigerant in the system.
	E04	E43	2.Check whether there is gas in the refrigerant system and whether the vacuum is done completely.
Too High Pressure Failure			3.Check whether the water flow rate is not enough in hydraulic system.
Over 3 Times			4.Check whether the plate heat exchanger is blocked.
			5.Check whether the EEV is blocked.
			6.Check whether heat exchange is not enough because outdoor heat exchanger is blocked or fan motor stops.
			1.Check whether the filter in cooling system is blocked.
Evaporating Pressure Too Low		544	2.EEV has no action.
Protection Over 3 Times	E05	E44	3.Check whether the EEV is blocked.
			4.Check whether the refrigerant is leaking.
Defrosting Failed Over 3 Times	E06	E45	1.Check whether the model can meet the heating demand.
	200	L 13	2.Check whether coil temp. and inlet wate temp. are connected reversely.

Failure List	System1	System2	Possible Reasons
		E46	1.Check whether the filter in cooling system is blocked.
			2.EEV has no action.
Anti-Freezing Protection in Cooling Over 3 Times	E07		3.Check whether the EEV is blocked.
-			4.Check whether the refrigerant is leaking.
			5.Check whether the water flow rate is not enough in hydraulic system.
Compressor Miss or Wrong	EOS	E47	1.Check whether the compressor cable is loose or not well connected.
Phase	E08	E47	2.Check whether the power cable in three phrase is connected wrongly.
IPM Modular Failure	E09	E48	Check whether IPM Module of Fan Motor driver PCB is failed.
Temp. Abnormal of IPM Module of Fan Motor Driver PCB	E10	E49	Check whether IPM Module of Fan Motor driver PCB is failed.
Communication Failure Between Operation Panel and Main PCB	E11		Check whether cable of the operation panel is loose or broken.
	P01		1.Check whether water resistance is big, and the water flow rate is not enough in hydraulic system.
Water Flow Switch Protection			2.Check whether the water flow switch is broken.
water Flow Switch Flotection			3.Check whether the water system is blocked.
			4.Check whether the water pump is broken.
Anti-Freezing Protection- Stage 1	P02		Check whether the ambient temp. or water outlet temp. are too low.
Anti-Freezing Protection- Stage 2	P03		Check whether the ambient temp. or water outlet temp. are too low.

Failure List	System1	System2	Possible Reasons
	P04		1.Check whether the water outlet temp. are too high in heating.
Too High Water Outlet Temp. Protection in Heating			2.Check whether the water flow rate is not enough in hydraulic system.
			3.Check whether there is air in hydraulic system.
Too Low Water Outlet Temp.			1.Check whether the water outlet temp. are too low in cooling.
Protection in Cooling			2.Check whether cooling capacity is more than the cooling demand.
	Р06	P40	1.Check whether there is gas in the refrigerant system and whether the vacuum is done completely.
			2.Check whether the water flow rate is not enough in hydraulic system.
Compressor Discharge Temp. Too High			3.Check whether the plate heat exchanger is blocked.
			4.Check whether the filter in cooling system is blocked.
			5.Check whether the refrigerant is leaking.
Protection for Too Big Difference Between Water Inlet and Outlet Temp.	P07		Check whether the water flow rate is not enough in hydraulic system.
Protection for Defrosting Failure			1.Check whether heating capacity matches with heating demand.
	P08	P42	2.If water temp. is high enough, but this failure happens in defrosting, check whether the coil temp. and water inlet temp. sensor are installed reversely.

Failure List	System1	System2	Possible Reasons
	P09	P43	1.Check whether the filter in cooling system is blocked.
			2.EEV has no action.
Anti-Freezing Protection in Cooling			3.Check whether the EEV is blocked.
			4.Check whether the refrigerant is leaking.
			5.Check whether the water flow rate is not enough in hydraulic system.
			1.Check whether there is too much refrigerant in the system.
High Pressure Switch Protection		Р44	2.Check whether there is gas in the refrigerant system and whether the vacuum is done completely.
			3.Check whether the water flow rate is not enough in hydraulic system.
	P10		4.Check whether the plate heat exchanger is blocked.
			5.Check whether the EEV has no action.
			6.Check whether heat exchange is not enough because outdoor heat exchanger is blocked or fan motor stops.
Low Pressure Switch Protection			1.Check whether the filter in cooling system is blocked.
	D11	Dia	2.Check whether the EEV has no action.
	P11	P45	3.Check whether the EEV is blocked.
			4.Check whether the refrigerant is leaking.

Failure List	System1	System2	Possible Reasons
	P12	P46	1.Check whether there is gas in the refrigerant system and whether the vacuum is done completely.
Too High Pressure Protection			2.Check whether the water flow rate is not enough in hydraulic system.
			3.Check whether the plate heat exchanger is blocked.
			4.Check whether the filter in cooling system is blocked.
		P47	1.Check whether the water flow rate is not enough in hydraulic system.
Too Low Pressure Protection	P13		2.Check whether the plate heat exchanger is blocked.
			3.Check whether the refrigerant is leaking.
Too High Voltage Potection	P14	P48	Check whether input voltage is too high.
Too Low Voltage Potection	P15	P49	Check whether input voltage is too low.
Too High Current Potection	P16	P50	Check whether water temp. is too high, driver PCB for compressor is broken, or compressor is broken.
Too Low Current Potection	P17	P51	Check whether refrigerant is not enough, or leakage, or comopressor is broken,or driver PCB for comopressor is broken.
Protection for Overload Compressor	P18	P52	Check whether water temp. is too high, driver PCB for compressor is broken, or compressor is broken.
Fan Motor Overload	P19	Р53	Check whether fan motor is broken, driver PCB for fan motor is broken, or cable in between is loose.

7. Failure code list

Failure List	System1	System2	Possible Reasons
Limited Lock	P20		Time of usage is up. Please connect installer.
Too High Outdoor Coil Temp. Protection	P21	P54	1.Check whether there is gas in the refrigerant system and whether the vacuum is done completely.
			2.Check whether outdoor fan motor stops in cooling.
			3.Check if the outdoor coil fan is blocked.
			4.Check whether the water flow rate is not enough in hydraulic system.
Too High Indoor Coil Temp. Protection			1.Check whether the filter in heating system is blocked.
			2.EEV has no action.
	P22	P55	3.Check whether the EEV is blocked.
			4.Check whether the refrigerant is leaking.
			5.Check whether the water flow rate is not enough in hydraulic system.

NOTES	

Thank you for choosing our quality product. Please read this manual carefully before use and follow the instructions to operate the unit in order to prevent damages on the device or injuries to staff.

> Specifications are subject to change with product improvements without prior notice. Please refer to the specification sticker on the unit for upgraded specifications.

> > NCSMS00374A00-A